Abstract:Nowadays, the number of vehicles is increasing gradually, which aggravates the occurrence of traffic accidents. At the same time, Traffic Sign Recognition (TSR) system came into our lives. TSR can prompt and instruct the drivers to drive in a standard and safe way through accurate detection and recognition of traffic signs on the road, reducing the occurrence of traffic accidents. In this paper, the research results of scholars are summarized and analyzed in detail. How to use the characteristics of traffic signs and effective methods to detect and identify them efficiently can improve the timeliness and accuracy of detecting and identifying traffic signs.
孙颖,葛平淑,刘德全. 交通标志的检测与识别研究综述[J]. 大连民族大学学报, 2019, 21(5): 412-417.
SUN Ying, GE Ping-shu, LIU De-quan. A Review on Traffic Sign Detection and Recognition. Journal of Dalian Nationalities University, 2019, 21(5): 412-417.
[1] HUANG H, HOU L Y. Speed limit sign detection based on Gaussian color model and template matching[C]. IEEE International Conference on Vision, Image and Signal Processing,2017:118-122. [2] XU Z, REN J Y, BAO C Q. A Traffic signs' detection method of contour approximation based on concave removal[C]. 2016 Chinese Control and Decision Conference, 2016:5199-5204. [3] YANG Y, LUO H L, XU H R, et al. Towards real-time traffic sign detection and classification[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7):2022-2031. [4] WANG C Y. Research and application of traffic sign detection and recognition based on deep learning[C]. International Conference on Robots & Intelligent System, 2018:150-152. [5] AKATSUKA H. Road signposts recognition system[R]. SAE Technical Report,1987:189-196. [6] SAINT B M.Road sign recognition:A study of vision-based detection making for environment recognition[M]//ICHIRO M.Vision-based Vehicle Guidance.Heidelberg:Springer,1992:162-172.. [7] KEHTARNAVAZ A D, ARMINGOL J M, MATA M. Traffic sign recognition and analysis for intelligent vehicles[J]. Image & Vision Computing, 2003, 21(3):247-258. [8] ESCALERA A D, MORENO L E, SALICHS M A, et al. Road traffic detection and classification [J].IEEE Transaction on Industrial Electronics ,1997,44(6):848-859. [9] 刘华平,李建民,胡晓林,等.动态场景下的交通标志检测与识别研究进展[J].中国图象图形学报,2013,18(5): 493-503. [10] BOUNMEDIENE M, LAUFFENBURGER J P, DANIEL J,et al. Coupled detection, association and tracking for traffic sign recognition[C]. IEEE Intelligent Vehicles Symposium Proceedings, 2014:1402-1407. [11] BOUNMEDIENE M, LAUFFENBURGER J P, DANIEL J, et al. Multi-ROI association and tracking with belief functions: Application to traffic sign recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6):2470-2479. [12] LILLO-CASTELLANO J M, MORA-JIMENEZ I, FIGUERA P C, et al. Traffic sign segmentation and classification using statistical learning methods[J]. Neurocomputing, 2015, 153: 286-299. [13] Ellahyani A, Ansari M E, Jaafari I E. Traffic sign detection and recognition based on random forests[J]. Applied Soft Computing, 2016, 46:805-815. [14] LEE H S,KIM K. Simultaneous traffic sign detection and boundary estimation using convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(5):1652-1663. [15] NATARAJAN S, ANNAMRAJU A, BARADKAR C S. Traffic sign recognition using weighted multi-convolutional neural network[J]. IET Intelligent Transport Systems, 2018, 12(10):1396-1405. [16] 蒋刚毅,郑义.形态骨架匹配算法机器在交通标志识别中的应用[J].电路与系统学报,1996,1(3):16-23. [17] 郁梅, 郁伯康.基于彩色图像的指示标志检测[J].计算机工程与应用,2000,36(4):169-172. [18] 杨斐, 王坤明.基于神经网络的交通标志识别方法[J].抚顺石油学院学报,2003,23(1):77-79. [19] 王坤明, 徐忠仁.基于不变矩和神经网络的交通标志识别方法研究[J].计算机应用研究,2004,21(3):254-255. [20] 郑芳平, 王伟智. 基于小波变换和RBF神经网络的交通标志识别[J].福州大学学报,2007, 35(3):397-401. [21] 沙莎, 肖学钢.一种多通道融合的交通标志检测方法[J].计算机工程,2009,35(6):202-204. [22] 戈侠, 于凤琴, 陈莹.基于分块自适应融合特征的交通标志识别[J].计算机工程与应用,2017, 53(3):188-192. [23] 姚汉利,赵金金,鲍文霞.基于特征融合和字典学习的交通标志识别[J].计算机技术与发展,2018, 28(1):51-55. [24] LIU W, LU R, LIU X L. Traffic sign detection and recognition via transfer learning[C]. 2018 Chinese Control and Decision Conference, 2018: 5884-5887. [25] YUAN Y, XIONG Z, WANG Q. VSSA-NET: vertical spatial sequence attention network for traffic sign detection[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3423-3434. [26] SHEIKH M A, KOLE A, MAITY T. Traffic sign detection and classification using colour feature and neural network[C]. 2016 International Conference on Intelligent Control Power and Instrumentation, 2016:307-311. [27] KESER T, IVAN D. Traffic sign shape detection and classification based on the segment surface occupancy analysis and correlation comparisons[J]. Tehniki vjesnik, 2018, 25(S1):23-31. [28] LIU H X,RAN B. Vision-based stop sign detection and recognition system for intelligent vehicle[J]. Transportation Research Record, 2001:161-166. [29] 刘念, 苏杭, 郭纯宏.基于Hough变换圆检测的人眼定位方法改进[J].计算机工程与设计,2011,32(4):1359-1362. [30] 孙方敏,乔艳涛,孙祥国.基于Hough变换圆检测算法的改进[J].机械工程师, 2016(10):29-31. [31] 郝博闻, 梁宇峰.基于颜色空间和模板匹配的交通标志检测方法[J].智能计算机与应用, 2016(4):20-22. [32] 刘占文, 赵祥模.基于图模型与卷积神经网络的交通标志识别方法[J].交通运输工程学报,2016, (5):122-131. [33] JIN J, FU K,ZHANG C. Traffic sign recognition with hinge loss trained convolutional neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 1991-2000. [34] 赵银玲, 周武能. 基于改进卷积神经网络的交通标志识别方法[J].计算机系统应用, 2018, 27(10):213-217. [35] GIRSHICK R, DONAHUE J, DARRELLAND T, et al. Rich feature hierarchies for object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014:580-587. [36] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [37] 李晨, 汪杨.基于卷积神经网络的交通标志实时检测与识别[J].数字技术与应用, 2018, 36(6):96-97. [38] 吕耀坤.基于卷积神经网络的实景交通标志识别[J].物联网技术,2017,7(1):29-30. [39] 黄娜君,汪慧兰,朱强军,等.基于ROI和CNN的交通标志识别研究[J].无线电通信技术,2018(2):160-164. [40] ZHE Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild[C]. IEEE Conference on Computer Vision & Pattern Recognition, 2016:2110-2118. [41] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C].International Conference on Neural Information Processing Systems, 2014:2672–2680. [42] 张营营. 生成对抗网络模型综述[J]. 电子设计工程, 2018,26(5):34-37. [43] PANG Y, XIE J, LI X. Visual haze removal by a unified generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018: 1-11. [44] 王杨, 张鑫, 许闪闪.基于维纳滤波器和生成对抗网络的动态模糊图像处理方法[J].计算机系统应用, 2019,28(4):145-150. [45] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint:1511.06434. [46] GHORBAN F, MILANI N, SCHUGK D, et al. Conditional multichannel generative adversarial networks with an application to traffic signs representation learning[J]. Progress in Artificial Intelligence, 2019,8(1):73-82. [47] LUO H L,KONG Q Q,WU F C. Traffic sign image synthesis with generative adversarial networks[C].2018 24th International Conference on Pattern Recognition,2018:2540-2545.