Joint Observation of Vehicle States and Parameters Based on Unscented Kalman Filtering

LI Xin, GE Pingshu, WANG Yang, ZHANG Tao, LIU Junjie

PDF(1356 KB)
PDF(1356 KB)
Journal of Dalian Minzu University ›› 2024, Vol. 26 ›› Issue (5) : 395-399.

Joint Observation of Vehicle States and Parameters Based on Unscented Kalman Filtering

  • LI Xin1,2, GE Pingshu1,2, WANG Yang1,2, ZHANG Tao1,2, LIU Junjie1,2
Author information +
History +

Abstract

In order to improve the control performance of distributed driving electric vehicles, and for the situation that some vehicle state parameters cannot be directly measured by sensors, this paper used unscented Kalman filters to design a nonlinear observer for vehicle state and parameter coupling, and estimated the vehicle state and actuator failure coefficients. The nonlinear vehicle dynamic model was established, so that the motor fault diagnosis problem was transformed into a real-time parameter estimation problem. The yaw speed and vehicle speed were estimated in real time by UKF (Unscented Kalman Filter). Finally, the Carsim/Simulink co-simulation was used to verify the problem. The simulation results show that the observer can accurately estimate the above related vehicle states and parameters, which verifies that the estimation algorithm has high real-time performance and accuracy.

Key words

distributed driving electric vehicles / parameter estimation / UKF / fault diagnosis

Cite this article

Download Citations
LI Xin, GE Pingshu, WANG Yang, ZHANG Tao, LIU Junjie. Joint Observation of Vehicle States and Parameters Based on Unscented Kalman Filtering. Journal of Dalian Minzu University. 2024, 26(5): 395-399

References

[1] 王震坡,陈辛波,张雷,等. 分布式驱动电动汽车关键技术及产业化展望[J]. 科技导报, 2020, 38(8): 99-100.
[2] 王凡勋, 殷国栋, 沈童, 等. 四轮驱动电动汽车质心侧偏角与轮胎侧向力非线性鲁棒融合估计[J]. 中国机械工程,2022,33(22):2673-2683.
[3] GENG J,XIA L,WU D.Attitude and heading estimation for indoor positioning based on the adaptive cubature Kalman filter[J]. Micromachines, 2021, 12(1): 79.
[4] JIANG Y,HUANG Y,XUE W,et al.On designing consistent extended Kalman filter[J]. Journal of Systems Science and Complexity, 2017, 30(4): 751-764.
[5] 胡敬宇,汪龑,严永俊,等. 基于限定记忆随机加权扩展卡尔曼滤波的车辆状态估计[J].东南大学学报(自然科学版),2022,52(2):387-393.
[6] 汪龑,魏民祥,赵万忠,等. 基于递推最小二乘法与模糊自适应扩展卡尔曼滤波相结合的车辆状态估计[J]. 中国机械工程,2017,28(6):750-755.
[7] 邢德鑫,魏民祥,赵万忠,等. 基于自适应容积粒子滤波的车辆状态估计[J]. 南京航空航天大学学报,2020,52(3):445-453.
[8] 刘胜,牛鸿敏,张兰勇,等. H∞模糊自适应容积卡尔曼滤波[J]. 哈尔滨工程大学学报,2020,41(3):404-410.
[9] 宋义彤,舒红宇,陈仙宝,等. 分布式电动汽车状态与参数无迹卡尔曼滤波估计[J]. 机械工程学报,2020,56(16):204-213.
[10] 张志达,郑玲,吴行,等. 基于鲁棒自适应UKF的分布式电动汽车状态估计[J]. 中国科学:技术科学,2020,50(11):1461-1473.
PDF(1356 KB)

504

Accesses

0

Citation

Detail

Sections
Recommended

/