盲源分离不确定性问题研究综述

肖瑛, 马艺伟, 黄小青

PDF(910 KB)
PDF(910 KB)
大连民族大学学报 ›› 2021, Vol. 23 ›› Issue (5) : 446-453.
计算机信息与通信

盲源分离不确定性问题研究综述

  • 肖瑛, 马艺伟, 黄小青
作者信息 +

A Survey of Uncertainty Problem Algorithms for Blind Source Separation

  • XIAO Ying, MA Yi-wei, HUANG Xiao-qing
Author information +
History +

摘要

盲源分离(Blind Signal Separation, BSS)技术在工程上具有广泛应用。典型的BSS算法均存在不确定性问题,即幅度不确定性和顺序不确定。作为BSS的技术瓶颈问题,BSS的不确定性问题在某些工程领域制约BSS方法的推广应用。文中基于线性瞬时BSS混合模型,分析了BSS不确定性问题产生的根源,并对其不确定性原因进行分类,然后针对分离模型的幅度不确定性和顺序不确定问题,对目前已有的解决方法进行了总结分析。最后文中介绍了BSS不确定性问题研究的方向和潜在的应用领域,为该问题的后续研究提出了新思路。

Abstract

Blind Signal Separation (BSS) technology has a wide range of applications in engineering. Typical BSS algorithms have uncertainty problems, amplitude uncertainty and sequence uncertainty. As the technical bottleneck of BSS, the uncertainty of BSS restricts the popularization and application of BSS methods in some engineering fields. In this paper, based on the linear instantaneous BSS mixed model, the root causes of the BSS uncertainty problem are analyzed, the uncertain reasons are classified, then the amplitude uncertainty and sequence uncertainty of the separation model are solved,the method is summarized and analyzed. Finally, the paper introduces the research direction and potential application fields of the BSS uncertainty problem, and puts forward new ideas for the follow-up study of the problem.

关键词

BSS / 独立分量分析 / Jade / Infomax / 不确定性

Key words

blind source separation / ICA / Jade / Infomax / uncertainty

引用本文

导出引用
肖瑛, 马艺伟, 黄小青. 盲源分离不确定性问题研究综述. 大连民族大学学报. 2021, 23(5): 446-453
XIAO Ying, MA Yi-wei, HUANG Xiao-qing. A Survey of Uncertainty Problem Algorithms for Blind Source Separation. Journal of Dalian Minzu University. 2021, 23(5): 446-453

参考文献

[1] AMAL L, ABDEL G. Blind Separation of Instantaneous Mixtures of Independent /Dependent Sources[J]. Circuits, Systems, and Signal Processing, 2021,10(34):3-6.
[2] MA B, ZHANG T Q. Underdetermined blind source separation based on source number estimation and improved sparse component analysis [J]. Circuits, Systems, and Signal Processing, 2021,11(2):1-20.
[3] 马宝泽,张天骐,江晓磊. 基于自适应惯性权重粒子群优化的多跳频信号盲源分离[J]. 电讯技术,2016,56(6):675-680.
[4] ALGORITHMS.New Findings on Algorithms Described by Investigators at Hefei University of Technology (Sampling Adaptive Learning Algorithm for Mobile Blind Source Separation) [J]. Telecommunications Weekly, 2018, 11(5):127-129.
[5] 张天骐,马宝泽,强幸子. 一种引入自适应动量项的变步长混沌信号盲分离算法[J]. 电子与信息学报,2017,39(4):908-914.
[6] HYVARIENN, AAPO. Independent component analysis: recent advances[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2013,371(1984):11-19.
[7] CICHOCKI A, MANDIC D, DE L. Tensor decompositions for signal processing applications: from two-way to multiway component analysis[J]. IEEE Signal Processing Magazine, 2015,52(5):145-163.
[8] HYVARIENN, KARHUNEN. Independent Component Analysis [J], 2001,19(2):14-19.
[9] ZHANG M, MA W J. Implementation of Fast-ICA on DSP for Blind Source Separation Procedia Engineering [J].2012, 10(5):4228-4233.
[10] 欧旭东,张天骐,闫振华. 基于多频段能量相关排序的语音卷积混合盲分离[J]. 计算机应用研究,2016,33(5):1481-1485.
[11] ANS B, HERAULT J, JUTTEN C. Adaptive neural architectures: Detection of primitives[C]. Paris, Proceedings of the COGNITIVA′85:1985: 593-597.
[12] SMARAGDIS P. Blind separation of convolved mixtures in the frequency domain[J]. Neurocomputing, 1998,22(1-3): 21-34.
[13] 陈秀敏,李珊君,董兴建. Fast-ICA算法非线性函数性能的仿真分析[J]. 计算机应用与软件,2020,37(6):277-282.
[14] TANG G, LUO G, ZHANG W, et al. Underdetermined blind source separation with variational mode decomposition for compound roller bearing fault signals[J]. Sensors, 2016,16(6):1716-1720.
[15] LI Y B, NIE W, YE F, et al. A mixing matrix estimation algorithm for underdetermined blind source separation [J]. Circuits Systems and Signal Processing, 2016,35(9):3367-3379.
[16] YANG L, LV J, XIANG Y. Underdetermined blind source separation by parallel factor analysis in time frequency domain [J]. Cognitive Computation, 2013,5(2):207-214.
[17] REJU V G, KOH S N. An algorithm for mixing matrix in instantaneous blind source separation [J]. Signal estimation Processing, 2009,89(9):1762-1773.
[18] IHUAL J, CAMACHO A, BERNABEU P, et al. A maximum a posteriori estimate for the source separation problem with statistical knowledge about the mixing matrix [J]. Pattern Recognition Letters,2013, 24(15):2519-2523.
[19] LIO G, BOU P. Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: implications for single-subject and group analyses[J].Neuroimage, 2013,67(5):137-152.
[20] 权友波,王甲峰,岳旸. 盲源分离技术现状及发展趋势[J]. 通信技术, 2011,44(4):13-15.
[21] WU C L, LIU Z, WANG X, et al. Single-channel blind source separation of co-frequency over lapped GMSK signal sunder constant modulus constraints[J]. IEEE Communications Letters, 2016,20(3): 486-489.
[22] HE P J, CHEN X M. A method for extracting fetal ECG based on EMD-NMF single channel blind source separation algorithm[J]. Technology and HealthCare, 2016,24(S1):17-26.
[23] ZHANG M J, YIN B J, LIU W X, et al. Thruster fault feature extraction for autonomous underwater vehicle in time-varying ocean currents based on single-channel blind source separation[J]. Proceedings of the Institution of Mechanical Engineers of Systems and Control Engineering, 2016,230(1):46-57.
[24] HORITA A, NAKAYA K, HIRANO A. A distortion-free learning algorithm for feed forward multi-channel blind source separation[J]. IEICE Transactions on Fundamental of Electronics Communications and Computer Sciences, 2007,E90A(12):2835-2845.
[25] SOUVIRAA L N, OLIVERO A, VINCENT E, et al. Multi-channel audio source separation using multiple deformed references[J]. IEEE ACM Transactions on Audio Speech and Language Processing,2015,52(1),1775-1787.
[26] FELIPE S, CLARK P, MARIANE R, et al. A New Initialization Method for Frequency Domain Blind Source Separation Algorithms [J].IEEE Signal Processing letters,2011,18(6):343-346.
[27] ZHANG K, CHAN L W. Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion[J]. Neurocomputing,2010,73(13):256-259.
[28] 梁皓博. 基于压缩感知的信号盲分离技术研究[D]. 北京:北京邮电大学,2018.
[29] BLUMENDATHl T, DAVIES M E. Gradient pursuits[J]. IEEE Trans Signal Process, 2008,56( 6):2370-2382.
[30] 董胡,徐雨明,马振中. 基于小波包与自适应维纳滤波的语音增强算法[J]. 计算机技术与发展,2020,30(1):50-53.
[31] 刘光晓,孟令雅,刘翠伟. 基于盲源分离技术的泄漏音波信号滤波方法分析[J]. 振动与冲击,2014,33(24):192-199.
[32] 林晓梦,高 勇. 一种改进重采样的粒子滤波盲源分离算法[J]. 重庆邮电大学学报,2019,31(4):502-508.
[33] 何继爱,刘琳芝,李英堂. LCL-FRESH滤波器实现单通道盲源分离[J]. 信号处理,2014, 30(2):236-242.
[34] 李伟,陈万里,柴远波.基于组合滤波设计的背景噪声归一化方法[J].火力与指挥控制,2020,45(9):77-82.
[35] HERSHEY J R, CHEN Z, ROUX J L, et al. Deep clustering: Discriminative embeddings for segmentation and separation[C]. ICASSP, 2016,25(3): 31-35.
[36] FAN C, LIU B, TAO J, et al. Discriminative Learning for Monaural Speech Separation Using Deep Embedding Features[C]. Beijing:Inter speech, 2019.
[37] MURATA N, IKEDA S, ZIEHE A. An approach to blind source separation based on temporal structure of speech signals [J].Neuro computing, 2001,41(1):1-24.
[38] 文威,张杭. 基于IVA的卷积混合频域盲扰信分离算法研究[J]. 军事通信技术,2012, 33(3):1-6.
[39] 张天骐,张华伟,刘董华. 基于区域增长校正的频域盲分离排序算法[J]. 电子与信息学报,2019,41(3):23-29.
[40] 王尔馥,张乃通,孟维晓. 频域BSS的邻频幅角比排序算法[J]. 计算机工程与应用,2009,45(23):134-136.
[41] HUANG Y L, KENSETH M. Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol[J]. Environmental science & technology,2020,32(2):5-6.
[42] 熊坤来,刘章孟,柳 征. 基于EM算法的宽带信号DOA估计及盲源分离[J]. 电子学报, 2015,43(10):2028-2033.
[43] 侍昌发. 基于约束盲分离的DOA估计算法研究[D]. 合肥:中国科学技术大学,2018.
[44] CIARAMELLA A, TAGLIAFERRI R. Amplitude and Permutation Indeterminacies in Frequency Domain Convolved ICA [C].Italiano:Proceedings of the International Joint Conference on Neural Networks, 2003,10(4):708-713.
PDF(910 KB)

5273

Accesses

0

Citation

Detail

段落导航
相关文章

/