为了改善传统的气体传感器性能,将Ag-ZSM-5沸石与SnO2材料以直接混合法制成复合气敏元件。用XRD、SEM、TEM分别对ZSM-5和Ag-ZSM-5两种沸石进行了表征测试与分析。制备了SnO2、SnO2/ZSM-5和/Ag-ZSM-5三种气体传感器进行了VOC气体的气敏对比测试。实验结果表明,与纯SnO2传感器相比,SnO2与Ag-ZSM-5混合的复合材料大幅改善了对甲醛气体的响应值。在检测50 ppm浓度的甲醛气体时,与SnO2传感器相比,加入ZSM-5沸石材料后,响应值提高了36%;而加入Ag-ZSM-5沸石材料后,响应值提高了121%。为了验证实验结果的准确性以及探索Ag-ZSM-5沸石在微观方面对吸附气体的影响,结合基于DFT的第一性原理分析了Ag-ZSM-5沸石对甲醛气体分子气敏特性改善的机理。
Abstract
To enhance the performance of the conventional SnO2 gas sensor, a composite gas sensor was fabricated by directly mixing Ag-ZSM-5 zeolite and SnO2 material. The ZSM-5 and Ag-ZSM-5 zeolites were characterized using XRD, SEM and TEM. Three types of gas sensors, including SnO2, SnO2/ZSM-5 and SnO2/Ag-ZSM-5, were prepared to evaluate their sensitivity towards VOC gas. Experimental results demonstrated that the incorporation of Ag-ZSM-5 zeolite into SnO2 composite considerably enhanced the response value to formaldehyde gas, compared to the pure SnO2 sensor. Specifically, the response value increased by 36% after introducing ZSM-5 zeolite when the formaldehyde gas concentration was 50 ppm; whereas the response value increased by 121% after adding Ag-ZSM-5 zeolite. To verify the reliability of the experimental results and investigate the microscopic impact of Ag-ZSM-5 zeolite on gas adsorption, the mechanism behind the improvement in gas sensitivity of Ag-ZSM-5 zeolite towards formaldehyde gas molecules was analyzed based on the first principle of DFT.
关键词
气体传感器 /
DFT /
沸石 /
SnO2
{{custom_keyword}} /
Key words
gas sensor /
DFT /
zeolite /
SnO2
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SIMAYI M, SHI Y, XI Z, et al. Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives [J]. Science of The Total Environment, 2022, 826: 153994.
[2] WU W, XUE W, ZHENG Y, et al. Diurnal regulation of VOCs may not be effective in controlling ozone pollution in China [J]. Atmospheric Environment, 2021, 256: 118442.
[3] ZAPPA D, GALSTYAN V, KAUR N, et al. “Metal oxide-based heterostructures for gas sensors”-A review [J]. Analytica Chimica Acta, 2018, 1039: 1.
[4] 孙舒鹏, 孙炎辉, 董玉华, et al. 沸石及其复合物气体传感器的研究与应用 [J]. 硅酸盐通报, 2021, 40(1): 280.
[5] SUN Y, WANG J, DU H, et al. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers [J]. Journal of Alloys and Compounds, 2021, 868: 159140.
[6] BINIONS R, AFONJA A, DUNGEY S, et al. Discrimination effects in zeolite modified metal oxide semiconductor gas sensors [J].IEEE Sensors Journal,2010,11(5):1145.
[7] SAHNER K, SCHÖNAUER D, KUCHINKE P, et al. Zeolite cover layer for selectivity enhancement of p-type semiconducting hydrocarbon sensors [J]. Sensors and Actuators B: Chemical, 2008, 133(2): 502.
[8] YAO J, HE Y, ZENG Y, et al. Ammonia pools in zeolites for direct fabrication of catalytic centers [J]. Nature communications, 2022, 13(1): 1-10.
[9] YANG Z, LIU A, WANG C, et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment [J]. ACS sensors, 2019, 4(5): 1261.
[10] LI G, VASSILEV P, SANCHEZ-SANCHEZ M, et al. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol [J]. Journal of Catalysis, 2016, 338: 305.
[11] GRUNDNER S, MARKOVITS M A, LI G, et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol [J]. Nature communications, 2015, 6(1): 7546.
[12] DENG H, YU Y, HE H. Water Effect on Preparation of Ag/Al2O3 Catalyst for Reduction of NOx by Ethanol [J]. The Journal of Physical Chemistry C, 2016, 120(42): 24294.
[13] WANG Z, SUN Q, WANG D, et al. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen [J]. Separation and Purification Technology, 2019, 209: 1016.
[14] YUMURA T, NANBA T, TORIGOE H, et al. Behavior of Ag3 clusters inside a nanometer-sized space of ZSM-5 zeolite [J]. Inorganic Chemistry, 2011, 50(14): 6533.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
辽宁省自然科学基金项目(2022-BS-102)。
{{custom_fund}}